

EDF POWER NETWORKS LAB

CONCEPT GRID

Un moyen d'essais unique dédié aux matériels innovants et «smart» pour les réseaux de distribution

La plateforme expérimentale «Concept Grid» permet d'offrir une large gamme d'expérimentations en régime de fonctions normales et perturbées.

Cette conception particulière, la situe à mi-chemin entre les essais en laboratoire et les expérimentations de terrain. Concept Grid offre la possibilité de mener en toute sécurité, des campagnes d'essais complexes qu'il serait impossible de réaliser sur un réseau réel.

Ces essais ont pour but de tester des matériels innovants et des nouvelles technologies (transformateurs HTA/BT régleur en charge, systèmes de stockage, détecteurs de défauts, régulateurs de tension, etc...); mais également des offres de service telles que des solutions de pilotage de micro-réseau (EMS) et de gestionnaire d'énergie.

En parallèle, Concept Grid réalise des essais dits systémiques intégrant de nouveaux moyens d'essais capables d'étudier l'interaction des matériels innovants sur le réseau de distribution.

Concept Grid est un véritable réseau de distribution représentatif d'un système électrique réel allant du poste source jusqu'à l'aval compteur. Il s'agit d'un outil flexible et évolutif.

Le réseau HTA est composé de 3 km de liaisons souterraines et aériennes, auxquels s'ajoutent 120 km modélisés par des éléments RLC. Le régime de neutre peut être modifié à la demande. Huit postes de distribution permettent l'alimentation de 7 km de réseau BT qu'il est possible d'interfacer avec un groupe tournant et des amplificateurs de puissance. Couplé à un simulateur temps réel, les amplificateurs permettent de générer des scénarios de productions et de consommations complexes.

Un ensemble de charges et de sources est connecté : panneaux PV, micro-éolienne, maisons témoins équipées, bornes de recharge de véhicules électriques, pompes à chaleur et bancs de charge résistifs.

Pour la réalisation des essais, nous mettons à profit nos compétences et expériences afin d'accompagner nos clients dans une démarche d'amélioration et de validation de leurs solutions.

COLOR OF POWER NETWORKS LAB

CONCEPT GRID

Installation en conditions réelles

	ELEMENTS	DESCRIPTION	A NOTER
ARCHITECTURE	Réseaux	7 km BT 3 km HTA 120 km HTA simulés (RLC)	Réseaux aériens et souterrains longueurs modulables
	Postes	Un poste source (Transformateur 20 MVA) 7 postes de distribution HTA/BT de 250 à 1,6 MVA 1 transformateur H61 (160 kW)	Utilisation de cellules à coupure dans le vide Utilisation d'un transformateur à tôles amorphes
	Quartier d'habitation	5 habitations, Bornes de recharge (standards et rapides) PV, micro-éoliennes, charges résistives triphasées mobile (600 kW), charges résistives fixes (400 kW)	Architecture Linky sur l'ensemble du quartier
	Système de Stockage Stationaire (SS)	SS Batterie Li-ion BT (33 kW, 50 kW, 160 kW, 280 kW) SS Batterie Li-ion HTA (750 kW)	Fonctionnement en grid-forming et grid-following des batteries Connexion possible avec la plateforme de test hydrogène
	Plateforme de recharge haute puissance de VE	Dalle béton d'une surface de 160m² pouvant accueillir diverses bornes de charges VE ultra rapide;	Alimentation des bornes via un transformateur 1,6 MVA
PERTURBATIONS	Réseaux HTA	Défauts	Aériens ou souterrains Monophasé à la terre, bi, triphasé 3 régimes neutres : résistif, compensé, actif
	Réseaux BT	Groupe tournant	Sur demande
		Amplificateur de puissance linéaire	120 kVA (source) / 60 kVA (charge) Perturbation en tension, courant, fréquence Création d'harmoniques de 40 Hz à 25 kHz
		Amplificateur de puissance à découpage	400 kVA (en source ou charge) Perturbations en tension, courant, fréquence Création d'harmoniques DC jusqu'à 15 kHz
		Ferme solaire	Simulation de production PV jusqu'à 30 kWc 160 kWc de production installée
		Court-circuit	Mono, bi, triphasé
	Réseaux DC	Amplificateur de puissance à découpage	400 kW (source ou charge) en monopolaire jusqu'à 800 V DC 200 kW (source ou charge) en monopolaire jusqu'à 1500 V DC
		2 Alimentations DC	15 kW (source ou charge) de 0 à 1500 V DC Perturbations en tension et courant
TELECOMMUNICATIONS	Fibre optique monomode	Contrôle commande (61 850) Transfert de données par IP-MPLS	Supervision, télé-conduite Mesures, fonctions avancées de réseau
	Réseau de puissance	Communication par CPL	Architecture compteur Linky Pilotage de charge
	Sans fil	Etude de tous protocoles (notamment résistance à un environnement électrique perturbé)	Pilotage d'OMT Capteurs

Simulation en temps réel et gestion de l'énergie

FONCTION	DESCRIPTION	
Simulation 🛕	Licence OPAL-RT, Temps réel, Jusqu'à 8 cœurs, P-HIL compatible	
Amplification 🔻	2 Amplificateur quatre quadrants, 3 modes de fonctionnement (U, I, Z), jusqu'à 400 kVA, P-HIL compatible	
EMS	Développement et test d'algorithmes de pilotage	

networks-lab.edf.com

