

OPERATIONS & MAINTENANCE SUPPORT Controlling turbine blade vibrations

YOUR STAKES

- Map the vibration level of turbine blades to identify associated risks
- Implement proven solutions to reduce vibration level
- Control the risk of fin damage in the presence of cracking

OUR OFFER

SECTORS OF APPLICATION

The offer consists in:

- Analyze the vibration level of the turbine blades
- Assess the risk of crack propagation
- Look for solutions to reduce detected vibration levels

The offer can be detailed as follows:

- Methodological advice and expert opinion
- On-site vibration measurements
- Advanced studies on the basis of numerical simulation: reparability, harmfulness of defects (maintenance error, cracking, etc....)
- Construction of customized de-tuning solutions to reduce vibration level

A unique expertise in turbine systems

- Our experience as operator of many power generation units of different power ratings has enabled us to gain a good understanding of the risks associated with vibration phenomena occurring on all types of turbines and in all operating fields.
- We rely on advanced experimental means (BVM instrumentation), high-performance numerical simulation tools developed by EDF Group R&D (Code_Aster) and proven solutions tested on EDF's power generation fleet
- The implementation of BVM instrumentation is fully mastered by our team of experts, thanks to the industrial experience feedback from our clients.

Electricity power plants operating finned turbines

nstrumentation of a wheel

Terminal fins

KEY FIGURES:

- Order of magnitude of the gains on the vibration level of the fins: 6
- Non-linear calculation time for fin start: between 7 and 36 hours
- Years of experience acquired by EDF R&D in this field: 15 years

OUR ASSETS

EXPERIMENTAL RESOURCES

Monitoring by the installation of an instrumentation allowing the measurement of the vibrations of the fins based on the fine measurement of the passage times (Blade Vibration Monitoring - BVM). The BVM measurements were developed on our test benches and then on our thermal electricity production sites.

DIGITAL RESOURCES

- IT development skills allowing for total mastery industry standards and codes.
- Fin stress assessment using finite element simulation.

OPERATING SUPPORT

Disconnection of fins leading to the reduction of the flutter coupling at the origin of the vibrations, thus, inducing significant stresses at the foot of the fin.

AN INTEGRATED PACKAGE

Expertise in the BVM technique and in both digital and experimental disconnection techniques, acquired through the installation of several EDF Group generating stations.

60,8 60,6 60,4 mode 1 in Hz 60,2 60,0 59,8 Frequency 59,6 59.4 59.2 59 N ģ Ð 52 52 59 58 52 59 5 2 19 2

Vibration signal reduction

Dissonance

SATISFIED CLIENTS

Solution under development on the nuclear generating fleet after industrialization by GE according to EDF R&D specifications.

CONTACT:

retd-ermes-prestation-ext@edf.fr

A RICH HISTORY

The implementation of a solution for dissonance in the nuclear fleet is the result of many years of experience. After a phase of diagnostics on the origin of cracks at the base of turbine fins, validation on a nuclear industrial site made it possible to specify an efficient industrial solution.

EDF Lab Paris Saclay 7 Boulevard Gaspard Monge 91120 Palaiseau - France

www.edf.com

Graphical illustration of fin permutation BP2 - Flux 1 Cattenom 1 in 2009